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Electromagnetic Wave Propagation in a
Rectangular Waveguide with
Sinusoidally Varying Width

AMIYA KUMAR MALLICK AND GITINDRA S. SANYAL

Abstract—Wave propagation along a rectangular waveguide with slowly
varying width has been investigated with the help of field theory and
approximate circuit theory. In the ficld theory approach, two different
methods of analysis have been attempted. Many properties of the mod-
ulated periodic structure, e.g., the frequency dependence of the propaga-
tion constant, group and phase velocities, and the electric field axial
variation for the fundamental space harmonic and its filter-like property
have been investigated. The magnetic field lines on the H-plane for a
typical case exhibit an expected configuration. Experimental resuits show
close agreement with analysis. It is concluded that this structure supports
the fast fundamental space harmonic.

I. INTRODUCTION

TUDY OF THE electromagnetic properties of peri-

odic structures has been a subject of considerable
interest. Investigations have been made of nonreciprocal
periodic structures [1], [2] and periodically loaded lines [3].
Zucker [4] and Harvey [5] have considered different types
of open and closed periodic structures and have presented
a comprehensive bibliography.

In the case of distributed loading, the periodicity may
be generated by producing a gradual change in any one or
more of the electrical parameters of an otherwise uniform
transmission line. As an example of this [6], [7], a uniform
hollow waveguide may be filled with a dielectric material
whose permittivity changes smoothly and periodically
with longitudinal distance. Wave propagation through a
structure with sinusoidally modulated reactance walls has
similar properties [8]. The same idea has beecn extended
[9JH11] to the problem where the transverse cross section
of a waveguide is made a periodic function of the axial
distance. An approximate analysis in respect of field solu-
tions within a circular waveguide of periodically varying
cross section has been made by James and Walker [9].
The present paper gives the results of the theoretical and
experimental investigations on wave propagation through
a rectangular waveguide having sinusoidally varying
width along the axial direction.

Considerable insight into the nature of the wave propa-
gation within a periodic structure is obtained from its w8
diagram. With this end in view, the analysis has been
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directed to obtain the nature of variation of the phase
constant with frequency. Three methods of analysis have
been attempted to determine the propagation constant for
the fundamental space harmonic. In addition, the expres-
sions for different modal field components have also been
derived in this paper.

The method of analysis starts with an appropriate coor-
dinate transformation to make the wave equation separ-
able, thereby allowing the field solutions to be readily
obtained. In the separated form, the wave equation in-
volving the longitudinal axis as an independent variable
becomes a second-order differential equation with periodi-
cally varying coefficients. In the first method, this equa-
tion by suitable transformation is reduced to the Hill’s
equation. The phase shift per period is then evaluated
from the characteristic exponent value resulting from this
equation. The second method is concerned with the
numerical evaluation of the solution of the aforesaid dif-
ferential equation at different axial points assuming ap-
propriate initial conditions. The exact phase shift as well
as the field amplitude in a periodic cell is obtained from
the knowledge of the solution at the termination of a
period.

In the third method, a circuit theory approach has been
resorted to. Here the sinusoidally modulated waveguide is
approximated by a series of small sections of rectangular
waveguide of varying widths, each carrying a dominant
mode. From the knowledge of the wave amplitude trans-
mission matrix of each waveguide section, it is possible to
obtain the phase shift of one complete periodic cell.

The analysis presented also yields the field configura-
tions inside each cell of the periodic structure. A typical
sample of the magnetic field configuration has been in-
cluded.

The experimental program undertaken in this study
gives the w—f diagram and the axial variation of the field
amplitude in each cell. Results obtained by the three
different methods show excellent agreement with experi-
mental data.

II. CoORDINATE TRANSFORMATION

The geometry of the periodic structure is shown in
Fig. 1. For the purpose of solving the wave equation, it is
necessary to employ a suitable coordinate transformation.
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Fig. 1. Geometry of the periodic structure.

The required transformation relating the Cartesian coordi-
nates with the new system of coordinates u; (i=1,2,3)
matching the geometry of the periodic structure is given
as

U =x
wy=y/[1+mf(2nz/p)]
uy=z+A(y,z)

M

where f(27z /p) is a periodic function of z with period p,
m is the depth of modulation 0<m <1, and |f(27z/p)|
< 1. The undefined function A(y,z) becomes small in
magnitude when a slow axial variation of the width is
assumed. In the Taylor’s series expansions of f(2wz/p)
and of A(y,z) in z about u, higher order terms of A(y,z)
may then be neglected; further, the following conditions

|27/ p)mf'(27us / p)A(y, 2))|
<[1+mfQmu,/p)] (2a)

aA(y’ u3)

au3 <1

(2b)

are assumed to be satisfied. The orthogonality require-
ments of u; system of coordinates and the use of (2(b))
gives the derivative of A(y,u;) with respect to u,. Integrat-
ing this, the undefined function A(y,u,) is determined as

Ay u)~(27/p) 5 13mf (s /p)
[1+mf @rus/p)]. (3)

It can now be shown [12] that the wave equation in the
u; system of coordinates is separable if

1/2[ (2w /p)uymf (2mus/p) |'<1.

Then making use of (3) in (2b), and utilizing the above
condition for separability, the ultimate constraint on the
physical parameters is
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|32 /pYuim” (2 p)

[1+mf2mus /p) ]| <1, (4)

The worst possible constraint will be at a point where (4)
becomes maximum and may be defined by a parameter

()

It may be stated here that, though several waveguide
structures with different values of parameters have been
studied, the results of only two of them having two
different sets of parameter values corresponding to ¢=
0.063 (p=10 cm, m=0.2, i,=1.143 c¢cm) in set 1, and
¢=0207 (p=10 cm, m=0.3, #,=1.633 c¢m) in set 2 have
been presented in this paper.

Conditions as given in (2a), (2b), and (4) are all physi-
cally realizable and simplify the transformation indicated
in (1). Some of the useful expressions required for subse-
quent analysis are given below.

The Lamé coefficients for the 4, coordinates are

¢ =(2m72/p)2m(1 +m)<1.

hy=1+mf(2nu;/p)
hy~1. (6)

The relations between the unit vectors of the two systems
of coordinates are

L

=i~ [ @/ pYuynf 2mus/p)

iy=i,[Q2n/p)uymf 2mus /p) | +1, ¢
and the Stickel determinant is
0 0 1
§=0 —1 0. (8)

1 1/[1+mfQmuy/p)]> 0

- Finally, the simplified relations between the two coordi-

nate systems

x=u,
y=w[1+mf(2mu;/p)]
z=u;=A(y,u3). ©)

III. WAaVE EQUATION

It is now possible to solve the wave equation in the y
coordinate system as the requirements for orthogonality
and separability are satisfied. The wave equation V) +
k=0 expressed in terms of the u, coordinates takes the
general form [12]

3
1 3 [ mhohs 3y _
Tl ) au,.( e | HE¥=0 (10

2
i=1 hl

where k*=wue, ¢ is the wave function, and h’s are the
Lamé’s coefficients given in (6).
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Letting = U,(u;) Us(uy) Us(u3), the wave equation (10)
is separated into the following three ordinary differential
equations:

v,
L3
v,
d’Us  (2n/p)mf'(2au/p) dUs
du? 1+ mf RQauy/p)  du,
K2
+| k- K2— 2 U,=0. (11c)

{1+ mf(27ru3/p)}2

The methods of solution of the last of the above three
equations are discussed in Section V.

IV. FieLD SoLuTIiON

The electric and magnetic fields within the periodic
structure may exist in the form of various TE and TM
modes. It can be shown that in the #; coordinate system,
the solution of the wave equation is not directly obtain-
able for TE to z or TM to z modes, because (V*F),
# V?F,, where F, is the z component of electric vector
potential. It is, however, found that the above condition is
well satisfied by TE to u; and TM to u; modes, and the
wave equation is readily solvable for these hybrid modes
only.

In the u, coordinate system, the field components for
TE to u, are obtained by assuming the electric vector
potential F=i 1/ and the magnetic vector potential 4 =0,
and using them in the expressions for the electric field £
and the magnetic field H expressed in terms of F and 4
[13]. The field components for TM to u; are similarly
obtained by taking 4 =i ¢* and F=0. ¢ and ¢ are the
wave functions of respective modes and solutions of cor-
responding scalar Helmholtz equations. Thus the field
components are, for TE to u#, modes

1| 2 8% |5
E, =0 H=—|w —
1 1 qu[ ue oud2 }4/
! 11 8%/
2= T 5~ Hy=——-~
duy Jou hy 0u,du,
S FEY
E.= ._1_ a_#/__ 3= ___1_._ 2\# (123)
h, Ou, Jwp 01, Ous,
and for TM to u; modes
= L 2 a—Z a _
El jw€ I:(JJ IJ.€+ au% :lt[/ Hl 0
I U _ e
2 jwe hy Ou,du, duy
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____l_ 82¢a
 jwe Ou,0uy

3

(12b)

Since this structure would be fed by a standard rectan-
gular waveguide, it will be excited with a field that does
not vary in x dimension, ie., 9/0u,;=0. Then the field
components given by (12b) belong to the type of TE to z
and those of (12a) to TM to z.

Thus the field components for such TE to z mode are

e

Hy= ou,

E\=—jow?

__ 1
H,= h, du,

where ¢“= U,(u,)Us(u;) is the solution obtained from
(11). The boundary condition requires that the tangential
field E£;,=0 on the conducting walls defined by u,= * ii,.
Evidently, ¢“ should have two possible types of solution,
e.g., 1) symmetric solution about u, =0 for which ¢/*=cos
(Kyuy) Uy with K, =(2n+1)7/2u,,and 2) skew symmetric
solution about u, =0, where “=sin (Ku,) U, with K, =
nw /u,. Only the symmetric solution for the wave function
will be used in the subsequent discussion.

To express the field components in the Cartesian coor-
dinates (x,y,z), it is necessary to transform the field
solution shown in (13) with the use of (7). This yields

E, = —jwpcos(Kyuy) Uy
E,=E =H,=0

du,
H, =cos (K,u,) %;‘ +(27 /p)uymf’(27us / p)
(Ky/ hy)sin (Kyuy) Uy

H,=(K,/h,)sin(Kyu,) Us— (27 / p)umf’'(2mu; / p)

-cos (Kyu,) F

(14)
For the limiting case where m=0, u, tends to y, u; to z,

and u, to a/2, the field expressions of (14) take the usual
form.

V. DETERMINATION OF PROPAGATION CONSTANT

Now the central problem is to solve the differential
equation given in (11c). The propagation characteristics of
the structure will be revealed when the characteristic
exponent of the equation is determined. In this analysis,
the subscript 3 is dropped, and U; and u; are written as U
and u, respectively.

For a sinusoidally modulated waveguide f(27u/p)= —
cos (27u/p) (Fig. 1). Using (6), (11c) becomes
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d2u (2w /p)msin(2wu/p) du
du? 1—mcos(Qmu/p) du

K7
{1—mcos(2mu/p)}’

+| k2—

U=0. (15)

A. Hill’'s Analysis

Writing P (u) for the coefficient of dU/du in (15) and
using the transformations U= Vexp{— > [P (u) du} and
u=px/mn, (15) reduces to the Hill’s equation

axv

E+R(x)V=O (16)
where
R(x)=(P/7) k2————1—<22——4. @17
(1—mcos2x)

Being an even periodic function of x, R(x) may be
expanded into a Fourier series

o0
R(x)=0,+2 > 8,,cos(2rx).

r=1

(18)

Let the solution of (16) be written as V' =¢(x) exp (yx),
where the characteristic exponent y (propagation con-
stant) is in general a complex quantity. The characteristic
exponents are obtained by setting the Hill’s determinant
A(Jy) equal to zero. That is

Ur+2y'-6, -4, — 0,
22_00 22_—00 22—00
. -0,  (W'-8 -6
AGY) =] : ° 2
02 - 00 02 - 00 02 - 00
— b, -0, (jy=2y—-8,
22_00 22_00 22_90
=0. (19)
It immediately follows that [14]
sin? (jymw /2)=A(0)sin? ( Vo, 7/ 2)
cosh (my) =1-2A(0)sin?( /9, = /2). (20)

Now comparison of (17) and (18) yields
8o=(p/m)[ K~ KZ{1+(3/2)m>+(15/8)m*+ - -- } ]
0,=—0.5(p/ 7y’ KZ[2m+3m>+(60/16)m>+ - - - ]
8,=—0.5(p/7)’ K[ (3/2)m?+(5/2)m*+ (105 /32)m®

+00]

@)

and so on (numerically worked out up to 8,4).
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Fig. 2. Plot of the phase shift per period with frequency for two typical
periodic structures: (a) ¢=0.063 (set 1), (b) ¢=0.207 (set 2) using 1)
Hill’s analysis ( ), 2) numerical analysis (------ ), 3) stepped
waveguide analysis ( ), and 4) experimental results for (a)
(aan) and for (b) (eee). Note:: Results by Hill’s and numerical
analysis become identical for case (a) beyond about 10 GHz and for
case (b) beyond about 12 GHz.

@

From (21), the application of Cauchy’s ratio test shows
that

x
360, =(p/ 7 K~ KZ(1+2m+3m?+4m’
0

+5m*+6m> +Tmé+8m"+ -+ ) |

converges absolutely, thereby securing the convergence of
the Hill’s determinant [14]. The characteristic exponent y
may be evaluated by using either of the equations of (20)
in which A(0) is obtained by substituting jy=0 in (19).
The infinite determinant A(0), being convergent, is de-
termined by reducing its size to a finite but large order so
that only the significant elements around its center are
retained. In a dissipationless device, the value of the phase
shift per period is obtained by substituting y =, in (20).
The dependence of the phase shift per period SB,p on
frequency as obtained theoretically through this analysis
has been given in Fig. 2, which shows pass and stop band
characteristics typical of a periodic structure.

B. Numerical Analysis
The general form of (16) may be written as

dU dUu _
P +P(u)$ +Q(u)U=0.

(22)

According to Floquet’s theorem [14], for a lossless struc-

ture, the solution of (22) will have the format U=

A(uw)exp(*jfyu). Being a periodic function of u with

period p, A(u) may be expanded in a Fourier series. Thus
n=oco

U= a, exp (£ jB,u)
oo}

n=—

(23)

where B8, = B,+27n/p. B, is the propagation constant for
the nth space harmonic, while B, is the same for the
fundamental. For an infinite periodic waveguide excited



MALLICK AND SANYAL: PROPAGATION IN RECTANGULAR WAVEGUIDE

19

geodlio
= 5
[
§|-3J50~e
@ 9

W
w r61>0-6
< i3
TrafESo4
w w
> (=
kl2pzo2
J -

ut
¥ |=

8 9 0 i 12
FREQ.(CHZ) —»

Fig. 3. Dependence of the phase and group velocities (theoretical) of
the fundamental space harmonic on frequency for the periodic struc-
) and (b) ¢=0.207 (set 2)

Fig. 4. Magnetic lines of force for the TEy; mode in a periodic struc-
ture with ¢=0.063 (set 1) at frequency 9.6 GHz (pass band). Arrow
indicate tangents to the lines of force.

by a time-harmonic signal the standing-wave field ampli-
tude is

U(u)= 2, 2a,cos(B,u).
n=—co
Assuming the initial condition that U=1 and dU/du=0
at =0, it can be seen from (24) that 1=3%_2a,=
A---+a_st+a_,+va_+ayta+a,+az+---]. Again,
if U=U(p) at u=p it follows from (24) that cos(B,p)=
U(p). Therefore,

Bop=cos™'[U(p)]|=cos ' [U(p)]+27r (25)

where 7 is an integer including zero. It may be noted that
(24) with the above mentioned boundary conditions be-
longs to the Sturm-Liouville class.

Equation (15) has been numerically solved using the
Runge-Kutta method from which the plot of U (propor-
tional to electric field in the TE to z mode) versus u has
been obtained. From the plot of U versus u, the phase
shift per period ( 8,p) has been calculated using (25). The
value of » may also be obtained from the plot itself. The
propagation constants for other space harmonics may be
calculated using the relation 8, = 8,+27n/p.

The variation of the phase shift per period with
frequency has been calculated for a range of values of c.
The calculated results for only two typical values of ¢ are
shown in Fig. 2. The corresponding phase and the group
velocities have been found and are given in Fig. 3.

For a particular case, the calculated value of U may be
substituted in (14) to yield H, and H,, from which the
locus of the magnetic lines of force may be drawn. Such
magnetic lines, whose slopes (indicated by arrows) were

(24)
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Fig. 5. Stepped waveguide representation of the periodic structure: (a)
first-order approximation, (b) second-order approximation, and (c)
calculated results of approximate methods for a typical value of
¢=0.207 (set 2); first approx. (eee), second approx. (
third approx. ( X

obtained by using a digital computer, have been plotted in
Fig. 4 for a typical structure supporting the TE,, mode.

VL

In the next method, the circuit concept of the wave-
guide discontinuity has been utilized. The restriction given
in (5) is no longer important for the subsequent analysis.
In this method, the modulated width of the periodic
structure is approximated by small symmetrical sections
of uniform rectangular waveguides of different widths
placed in tandem (Fig. 5). The overall wave amplitude
transmission matrix for one complete period of the peri-
odic structure is obtained by multiplication of transmis-
sion matrices of individual waveguide sections. The phase
shift per period of the structure is determined by using the
formula cos(Byp)=(4,;+4,,)/2, where A;; and 4,, are
the two diagonal elements of the overall transmission
matrix [16].

In the first-order approximation, one periodic cell has
been considered to be represented by waveguides of two
different widths as shown in Fig. 5(a). From the overall
transmission matrix, the phase shift per period is obtained

STEPPED WAVEGUIDE ANALYSIS
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from
COS(,BOI’)
(Z,+Z, ) cos28,+8,)—(Z,— Z, ) cos2(8,~ 8,)
B 4Z,2,
(26)
where
8i=pip/4=[K2—(n/a)]p/8  Z=kn/B,,
n=V /e
8,=Bp/4=[K—(n/a)’]"’p/4,  Z,=kn/B,

Equation (26) may be further reduced to

cos ( Bop) = (1/4) h/;ﬁj— +\ff§—; ]

~cos (Bi+By)p/2

—l i‘ % - %l% }2008(:81_.32)1’/2 - (27)

In the second-order approximation, each periodic cell is
approximated by five uniform rectangular waveguides of
three different widths as shown in Fig. 5(b). Following the
same procedure, the phase shift may be obtained from

1
163, 8,85

- cos (By+ B+ B3)p/3
+( By — B (By— Bs) cos (Bi—By+B3)p/3

cos ( Bop) = [(,81'*',32)2(:82"':83)2

—(B +.32)2( Bo— B5)’ cos (Bi+B,—B3)p/3
—(B1= B’ ( B+ Bs) cos (B, = B,—B3)p/3
+2( ,322‘“:812)( Bs*— B,%) cos (B, +Bs)p/3

+2( B = B) (B~ B?) cos (B~ Bs)p/3]. (28)

Seven waveguide sections of four different widths give a
third-order approximation from which the phase shift per
period may be calculated as before. For the purpose of
comparison, the calculated values of Byp for ¢=0.063
obtained for the above three approximations are shown in
Fig. 5(c). The computed values of the phase shift per
period using the third-order approximation have also been
shown in Fig. 2 for two values of c. In this analysis, the
basic assumptions made are the following. 1) only the
dominant mode is allowed in each of the waveguide
sections and, 2) junction susceptances that are formed at
the steps have been neglected.
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Fig. 6. Experimental arrangement for the measurement of phase shift

per period and the electric field along the axis of the periodic struc-
ture: (1) microwave sweep oscillator (8 to 124 GHz), (2) 20-dB
directional coupler, (3) wavemeter, (4) power meter, (5) magic tee, (6),
(7) 3-dB directional coupler, (8)—(11) 10-dB directional coupler, (12)
short circuit plunger, (13) shorting plate, (14) frequency converter, (15)
network analyzer, (16) polar display, and (17)-(21) matched load.

VIL

The propagation constant of the periodic structures
under study has been experimentally determined by
measuring the resonant frequencies of a short-circuited
length of the periodic structure having sufficient whole
number of periods [17]. The shorting plate is placed at the
plane of symmetry. At resonance, 8,p =gw/s where s is
the number of periods and g is an integer. The values of ¢
may be determined by moving a dielectric bead axially
along the structure and counting the numbers of zero
perturbations of the field.

For determining the nature of variation of the electric
field along the axial direction, i.e., to obtain the variation
of U versus u, the amount of field perturbation (propor-
tional to E?) as the bead position is varied axially has
been found in a manner as suggested by Aikin [18]. The
experimental data agree closely with the theoretical plot
stated under Section III-B.

The experimental arrangement for the measurement of
By at various values of w as well as for finding the
variation of U (i.e., |E[) with u is shown in Fig. 6. It has
been possible to achieve quick and accurate results by
using a sweep oscillator and a network analyzer in the
above experiment.

The experimental results of B,p versus f have been
obtained for a number of cases showing good agreement
with analysis; typical experimental results are presented in
Fig. 2. The experimental results on the variation of the
electric field along the axis for several values of ¢ have
been found to agree with the corresponding calculated
values.

EXPERIMENT

VIIL

The propagation constant of a rectangular waveguide
with sinusoidal width modulation has been determined
first by using field theory and employing 1) numerical
analysis and, 2) the Hill’s equation. In a second approach,
circuit theory was applied.

The solution of the wave equation for the propagating
wave within the structure possesses the characteristic ex-
ponent which retains all the properties of the propagation
constant of the structure. Numerical analysis has been
employed for the solution of the wave equation and then
the exponent was evaluated. The same has also been
obtained by finding the determinant of the Hill’s equa-
tion. Results of both these methods are in good agreement

CONCLUSION
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with experimental data. In the former method, the final or
true value of the propagation constant is obtained,
whereas in the latter case the value is determined within
the restricted range of 0-2# radians. Further, the ac-
curacy of the numerical analysis depends on the order of
the Runge-Kutta method employed. Here a fourth-order
Runge-Kutta method which is of sufficiently high preci-
sion has been used. The accuracy of the analysis based on
the Hill’s equation, however, depends on the order of the
Hill’s determinant considered. In the present investiga-
tion, a 51 X 51 order of determinant has been used which
is accurate to five decimal places.

Though the theoretical development in the above two
methods of analysis is subject to constraint on the physi-
cal dimensions of the structure, i.e., ¢<1, it has been
found that the experimental results agree with the calcu-
lated values even for a large value of ¢ up to 0.25. Even
when the value of ¢=1.25, it was observed that though the
theory failed to predict the position and the width of the
stopbands, the nature of variation of the propagation
constant with frequency inside the passband was predict-
able.

In the circuit point of view, the above physical con-
straint is totally absent and the accuracy of the theoretical
results increases with the increase of the order of ap-
proximation. Further, the accuracy of this analysis may be
improved by considering the junction susceptance at each
discontinuity. This has been verified by the authors but
not reported here.

The study shows that the structure supports a fast wave.
It is characterized by stopbands whose widths decrease
with increasing frequency and finally vanish. The distor-
tion in the magnetic field lines for the TE; mode due to
width modulation has been clearly brought out.

ACKNOWLEDGMENT

The authors wish to thank Prof. N. B. Chakraborty,
Prof. B. N. Das, and Prof. B. K. Sarap of IIT, Kharagpur,
India, for many helpful discussions.

)

{21

(31

{41

(5]

g

(8]

¢

[10]

[i]

[12]
(13
[14]
[15]
[16]
[

(18]

249

REFERENCES

W. G. Spaulding, “The application of periodic loading to a ferrite
phase shifter design,” JEEE Trans. Microwave Theory Tech., vol.
MTT-19, pp. 922-928, Dec. 1971.

M. M. Z. Kharadly, “Periodically loaded nonreciprocal transmis-
sion lines for phase shifter application,” IEEE Trans. Microwave
Theory Tech., vol. MTT-22, pp. 635-640, June 1974.

A. Hessel, M. H. Chen, R. C. M. Li, and A. A, Oliner, “Propaga-
tion in periodically loaded waveguides with higher symrnetries,”
Proc. IEEE, vol. 61, pp. 183-195, Feb. 1973.

F. J. Zucker, “The guiding and radiation of surface waves,” in
Proc. Symp. Modern Advances in Microwave Technigues, Polytech-
nic Institute of Brooklyn, NY, 1954.

A. F. Harvey, “Periodic and guiding structures at microwave
frequencies,” IRE Trans. Microwave Theory Tech., vol. MTT-8, p.
30, Jan. 1960; and also in Microwave Engineering, ch. 10.
London, England: Academic Press, 1963.

T. Tamir, H. C. Wang, and A. A. Oliner, “Wave propagation in
sinusoidally stratified dielectric media,” IEEE Trans. Microwave
Theory Tech., vol. MTT-12, pp. 323-335, May 1964.

G. Yeh, K. F. Casey, and Z. A. Kaprielian, “Transverse magnetic
wave propagation in sinusoidally stratified dielectric media,” JEEE
Trans. Microwave Theory Tech., vol. MTT-13, pp. 297-302, May
1965.

A. Hessel and A. A. Oliner, “Basic properties of periodic wave-
guides with glide reflection symmetry,” in Proc. Symp. Electromag-
netic Wave Theory, part 1, J. Brown, Ed. Oxford, England: Per-
gamon, 1967, pp. 251-260.

C. R. James and G. B. Walker, “An approximate wave equation
for an axially symmetric periodic waveguide,” IEEE Trans. Micro-
wave Theory Tech., vol. MTT-14, pp. 428430, Sept. 1966.

0. R. Asfar and A. H. Nayfeh, “Circular waveguide with sinusoid-
ally perturbed walls,” JEEE Trans. Microwave Theory Tech., vol.
MTT-23, pp. 728-734, Sept. 1975.

A, K. Mallick, “Modal expressions of field in a slowly varying
rectangular periodic waveguide,” J. Inst. Electron. Telecommun.
Eng., vol. 22, pp. 18-22, Jan. 1976.

P. Moon and D. E. Spencer, Field Theory for Engineers New York:
Van Nostrand, 1961, pp. 303-309.

R. F. Harrington, Time-Harmonic Electromagnetic Fields. New
York: McGraw-Hill, 1961, p. 130.

E. T. Whittaker and G. N. Watson, 4 Course of Modern Analysis,
4th ed., New York: Cambridge, 1965, pp. 415-416.

E. L. Ince, Ordinary Differential Eguation. New York: Dover,
1956, pp. 381-382.

R. E. Collin, Foundations for Microwave Engineering. New York:
McGraw-Hill, 1966, p. 370.

J. C. Stater, Microwave Elecironics.
1950, pp. 185~186.

A. W. Aikin, “Measurerents in travelling-wave structures,” Wire-
less Eng., vol. 32, no. 9, pp. 230-234, Sept. 1955.

New York: Van Nostrand,




