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Electromagnetic Wave Propagation in a
Rectangular Waveguide with
Sinusoidally Varying Width

AMIYA KUMAR MALLICK AND GITINDRA S, SANYAL

Abstmcr-Wave propagation along a rccbmgufar waveguide with slowly

vWfW ~d~ hss ~n fIwes@Ited ~th tfre help of field theory and
approximate circuit theory. In the field theory approac@ two different
methods of analysis have been attempted. Many properties of the mod-

rdated ~riodic strnctnr~ e.g., the frequency dependence of the propaga-

tion constant group and phase velocitiq and the ekctrfc field axiaf
variation for the fondsrnentaf space harmonic and its fiiter-fike property
have been investigated. The magnetic field lines on the H-plane for a
typicaf case exhfflt an expected configuration. Experimental reanfts show

close agreement with analysis. It is concluded that this structure supports
the fast fundamental space harmonic.

I. INTRODUCTION

s

TUDY OF THE electromagnetic properties of peri-

odic structures has been a subject of considerable

interest. Investigations have been made of nonreciprocal

periodic structures [1], [2] and periodically loaded lines [3].

Zucker [4] and Harvey [5] have considered different types

of open and closed periodic structures and have presented

a comprehensive bibliography.

In the case of distributed loading, the periodicity may

be generated by producing a gradual change in any one or

more of the electrical parameters of an otherwise uniform

transmission line, As an example of this [6], [7], a uniform

hollow waveguide may be filled with a dielectric material

whose permittivity changes smoothly and periodically

with longitudinal distance. Wave propagation through a

structure with sinusoidally modulated reactance walls has

similar properties [8]. The same idea has been extended

[9]-[11] to the problem where the transverse cross section

of a waveguide is made a periodic function of the axial

distance. An approximate analysis in respect of field solu-

tions within a circular waveguide of periodically varying

cross section has been made by James and Walker [9].

The present paper gives the results of the theoretical and

experimental investigations on wave propagation through

a rectangular waveguide having sinusoidally varying

width along the axial direction.

Considerable insight into the nature of the wave propa-

gation within a periodic structure is obtained from its u--~

diagram. With this end in view, the analysis has been
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directed to obtain the nature of variation of the phase

constant with frequency. Three methods of analysis have

been attempted to determine the propagation constant for

the fundamental space harmonic. In addition, the expres-

sions for different modal field components have also been

derived in this paper.

The method of analysis starts with an appropriate coor-

dinate transformation to make the wave equation separ-

able, thereby allowing the field solutions to be readily

obtained. In the separated form, the wave equation irt-
volving the longitudinal axis as am independent variable

becomes a second-order differential equation with periodi-

cally varying coefficients. In the first method, this equa-

tion by suitable transformation is reduced to the Hill’s

equation. The phase shift per period is then evaluated

from the characteristic exponent value resulting from this

equation. The second method is concerned with the

numerical evaluation of the solution of the aforesaid dif-

ferential equation at different axial points assuming ap-

propriate initial conditions. The exact phase shift as well

as the field amplitude in a periodic cell is obtained from

the knowledge of the solution at the termination of a

period.

In the third iii~thod, a circuit theory approach has been

resorted to. Here the sinusoidally modulated waveguide is

approximated by a series of small sections of rectangular

waveguide of varying widths, each carrying a dominant

mode. From the knowledge of the wave amplitude trans-

mission matrix of each waveguide section, it is possible to

obtain the phase shift of one complete periodic cell.

The analysis presented also yields the field configura-

tions inside each cell of the periodic structure. A typical

sample of the magnetic field configuration has been in,-

eluded.

The experimental program undertaken in this study

gives the *B diagram and the axial variation of the field

amplitude in each cell. Results obtained by the three

different methods show excellent agreement with experi-

mental data.

II. COORDINATE TRAMSFORMATION

The geometry of the periodic structure is shown in

Fig. 1. For the purpose of solving the wave equation, it is

necessary to employ a suitable coordinate transformation.
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Fig. 1. C+eometxyof the periodic structure.

The required transformation relating the Cartesian coordi-

nates with the new system of coordinates Ui (i= 1,2,3)

matching the geometry of the periodic structure is given

as

U1=X

u~=y/[ 1+mf(2nz/p)]

Z+= z +A(y, z) (1)

where ~(27rz/p) is a periodic function of z with period p,

m is the depth of modulation O< m <1, and lj(2n-z/p)(

<1. The undefined function A(y, z) becomes small in

magnitude when a slow axial variation of the width is

assumed. In the Taylor’s series expansions of ~(27z/p)

and of A(y, z) in z about us higher order terms of A(y, z)

may then be neglected; further, the following conditions

\(2T/p)nt~(2@p)A(y,z)l

<[1 + mf(2fm3/p) ] (2a)

aA(y, u3) ~<~

au3
(2b)

are assumed to be satisfied. The orthogonality require-

ments of Ui system of coordinates and the use of (2(b))

gives the derivative of A(y, UJ with respect to U2. Integrat-

ing this, the undefined function A(y, UJ is determined as

o[1 +mf(2nu3/p)]. (3)

It can now be shown [12] that the wave equation in the

Ui system of coordinates is separable if

l/2[(2n/p)uzmf’(2fm3 /p) ]*cK 1.

Then making use of (3) in (2b), and utilizing the above

condition for separability, the ultimate constraint on the

physical parameters is

I~ (2r/p)2u~mf’’(2m3/p)

o[1 +nZj(2m.q/p)]/<<1. (4)

The worst possible constraint will be at a point where (4)

becomes maximum and may be defined by a parameter

c = (2?rii2/p)2nZ( 1 + m)<< 1. (5)

It may be stated here that, though several waveguide

structures with different values of parameters have been

studied, the results of only two of them having two

different sets of parameter values corresponding to c=

0.063 (p= 10 cm, m=O.2, Z7z= 1.143 cm) in set 1, and

c =0,207 (p= 10 cm, m =0.3, iiz = 1.633 cm) in set 2 have

been presented in this paper.

Conditions as given in (2a), (2b), and (4) are all physi-

cally realizable and simplify the transformation indicated

in (l). Some of the useful expressions required for subse-

quent analysis are given below.

The Lame coefficients for the u, coordinates are

h,=l

h2 = 1 + mf(2truJp)

h3-1. (6)

The relations between the unit vectors of the two systems

of coordinates are

i, = ix

~z= ~ – ~[(2~/p)u2mfl(2 fru3/p) ]

;J = ~[(2r/p)u2@’(27 fu3/p) ] + i (7)

and the Stackel determinant is

o

s= : –1

1 1/[ 1 + mf(2mq/p)]2

Finally, the simplified relations between

nate systems
X=24,

y= 242[1 + mf(2m3/P)]

z = U3–A(y, U3).

III. WAVE EQUATION

1
0 . (8)

o

the two coordi-

(9)

It is now possible to solve the wave equation in the Ui
coordinate system as the requirements for orthogonality

and separability are satisfied. The wave equation V’$ +

k’+ = O expressed in terms of the Ui coordinates takes the

general form [12]

where k2 = U2pE, $ is the wave function, and hi’s are the

Lam&s coefficients given in (6).
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Letting ~= Ul(ul) Uz(uz) U3(UJ, the wave equation (10)

is separated into the following three ordinary differential

equations:

d2Ul
— +K:U1=O
du;

(ha)

d2U2
—+ K;U2=0
du;

d2U, + (2~/p)mf’(2m+/p) dU,

du; 1 + mj(2m+/p) T

(llb)

I K;
+ k2– K~– 1U3=0. (lIC)

{1+ mf(27n43/p)}2

The methods of solution of the last of the above three

equations are discussed in Section V.

IV. FIELD SOLUTION

The electric and magnetic fields within the periodic

structure may exist in the form of various TE and TM

modes. It can be shown that in the Ui coordinate system,

the solution of the wave equation is not directly obta@-

able for TE to z or TM to z modes, because (V2F)Z

# V2F=, where F= is the z component of electric vector

potential. It is, however, found that the above condition is

well satisfied by TE to UI and TM to u ~ modes, and the

wave equation is readily solvable for these hybrid modes

only.

In the Ui coordinate system, the field components for

TE to Ml _are obtained by assuming the electric v~ctor

potential F= z~@ and the magnetic vector potential A = ~

and using them in the expressions for the electric_field ~

and the magnetic field F expressed in terms of F and A

[13], The field components for ~M to UI are similarly

obtained by taking X= l~tja and F= O. tjf and IJ” are the

wave functions of respective modes and solutions of cor-

responding scalar Helmholtz equations, Thus the field

components are, for TE to u, modes

and for TM to UI modes

a2qa

E3=~—
jae au1a243

Since this structure would
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H,=-+g. (12b)
22

be fed by a standard rectan-

gular waveguide, it will be excited ~th a field that does

not vary in x dimension, i.e., a/ th.il = O. Then the field
components given by ( 12b) belong to the type of TE to z

and those of (12a) to TM to z.

Thus the field components for such TE to z mode are

aqa
El= – jtq.qba

‘2=G

E2=E3=H1=0 H,=-~~ (13)
2

where #a= UZ(U2) UJU3) is the solution obtainedl from

(1 1). The boundary condition requires that the tangential

field El= O on the conducting walls defined by U2= * iiz.

Evidently, ~“ should have two possible types of solution,

e.g., 1) symmetric solution about U2= O for which i) a = cos

(K2U2) U3 with K2 = (2n + l)7T/2ii2, and 2) skew symmetric

solution about U2= O, where 4“ = sin (K2U2) U3 with K2 =

nn/ ii2. Only the symmetric solution for the wave functicm

will be used in the subsequent discussion.

To express the field components in the Cartesian cocm-

dinates (x,y, z), it is necessary to transform the field

solution shown in (13) with the use of (7). This yields

Ex = –jqt cos (K2U2) Us

EY=EZ=HX=O

dU3
Hy = COS (K2U2) —

du~
+ (277/p) u2mfl(277u3/p)

. (K2/h2)sin (K2U2) U,

Hz= (K2/h2) sin(K2u2) U3 – (2w/p)u2mf’(2wu3/p)

dU3
“Cos (K2U2) -@ . (14)

For the limiting case where m = O, U2 tends toy, M3 to z,

and Z72to a/2, the field expressions of (14) take the usual

form.

V. DETERMINATION OF PROPAGATION CONSTANT

Now the central problem is to solve the differential

equation given in (11 c). The propagation characteristics of

the structure will be revealed when the characteristic

exponent of the equation is determined. In this analysis,
the subscript 3 is dropped, and U3 and U3 are written as U

and u, respectively.

For a sinusoidally modulated waveguide j(27n.4/p) = –

cos (27u/p) (Fig. 1). Using (6), (1 lc) becomes
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dz.u ~ (2~/p)msin(2mu/p)

du2 ‘ 1- rncos(2Tu/p)

r

dU

z

1
K;

+ kz– 1U=o. (15)
{1 - mcos(2*u/p)}2

A. Hill’s Ana~sis

Writing P(u) for the coefficient of dU/du in (15) and

using the transformations U= Vexp { – ~ JP (u) du} and

u =px/n, (15) reduces to the Hill’s equation

d2V
—+ R(X)V=O
dx2

(16)

where

[

K;
R (x) =( P/T)2 k2 – 1 (17)

(1-mcos2x)2 “

Being an even periodic function of x, R (x) may be

expanded into a Fourier series

R (x)= 0.+2 ~ 02,cos(2rx). (18)
~=1

Let the solution of (16) be written as V=+(x) exp (yx),

where the characteristic exponent y (propagation con-

stant) is in general a complex quantity. The characteristic

exponents are obtained by setting the Hill’s determinant

A(jy) equal to zero. That is

A(jy) =

. . . . . . . . . . . . . . .

. . . (~Y+2)2-% -02 -04— . . .
22 – 00 22 – e. 22 – 00

– 02 (jy)2 -00 -02
. .._

02-00 02-00 — “’”N–e.

– (94 – 62 (jy -2)2-00
. .._

22 – eO 22 – 90 22–00 ““”
. . . . . . . . . . . . . . .

=0. (19)
It immediately follows that [ 14]

sin2 (j7n/2) = A(0) sin2 ( ~ 7r/2)

cosh(ny) = 1 –2A(0)sin2(~ 7/2). (20)

NOW comparison of (17) and (18) yields

60=(p/~)2[k2– K~{l+(3/2)m2+(15 /8)m4+ . . . }]

02s –0.5(p/tT)2K;[2 m+3m3+(60/16)m5+ . . . ]

04= –O. 5(p/~)2K~[(3/2)m2+ (5/2)m4+ (105/32)m6

+-l
... ... ... ... ... ... ...

(21). . . . . . . . . . . . . . . . . . . . .

and so on (numerically worked out up to &).

FREQ. (GHz)———

Fig. 2. Plot of the phaseshift per period with frequency for two typicaf
periodic structures: (a) c= 0.063 (set 1), (b) c= 0.207 (set 2) using 1)
Hill’s analysis ( ), 2) numerical analysis (-.. . ..). 3) stepped
waveguide anafysis (..__--.), and 4) experimental results for (a)
(AA A) and for (b) (.. o). Note:: Results by ~’s and nmnericid
analysis beeome identicaf for case (a) beyond about 10 GHz and for
case (b) beyond about 12 GHz.

From (21), the application of Cauchy’s ratio test shows

that

~%,=(p/n)2[k2-K~ (l+2m+3m2+4m3
o

+5m4+6m5+7mG+ 8m7+ .-. )]

converges absolutely, thereby securing the convergence of

the Hill’s determinant [14]. The characteristic exponent y

may be evaluated by using either of the equations of (20)

in which A(0) is obtained by substituting jy = O in (19).

The infinite determinant A(0), being convergent, is de-

termined by reducing its size to a finite but large order so

that only the significant elements around its center are

retained. In a dissipationless device, the value of the phase

shift per period is obtained by substituting y = j~o in (20).

The dependence of the phase shift per period &p on

frequency as obtained theoretically through this analysis

has been given in Fig, 2, which shows pass and stop band

characteristics typical of a periodic structure.

B. Numerical Ana~sis

The general form of (16) may be written as

(22)

According to Floquet’s theorem [14], for a Iossless struc-

ture, the solution of (22) will have the format U=

A (u) exp ( ~j&u). Being a periodic function of u with

period p, A (u) may be expanded in a Fourier series. Thus

where J3.= /30+ 2m/p. ~. is the propagation constant for
the rzth space harmonic, while & is the same for the

fundamental. For an infinite periodic waveguide excited
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FRECJ.(CHZ)-+

Fig. 3. Dependence of the phase and group velocities (theoretical) of
the fundamental space harmonic on frequency for the periodic struc-
tures with (a) c =0.063 (set 1) ( ) and (b) c =0.207 (set 2)

(-.-.-).

x

Fig. 4. Magnetic lines of force for the TE$l mode in a periodic struc-
ture with c= 0.063 (set 1) at frequency 9.6 GHz @ass band). Arrow
indicate tangents to the tines of force.

by a time-harmonic signal the standing-wave field ampli-

tude is

(24)

Assuming the initial condition that U= 1 and dU/du = O

at u = O, it can be seen from (24) that 1 = XE@2a. =

2[. . . +a_3+a_2+ a_, i-aoi-a1+a2+a3+ . ..]. Again,

if U= U(p) at u =p itfollows from (24) that cos ( pop) =

U(p). Therefore,

~O~=COS-l [ U(p)] ‘COS-’ [ U(p)] +2mr (25)

where r is an integer including zero. It may be noted that

(24) with the above mentioned boundary conditions be-

longs to the Sturm–Liouville class.

Equation (15) has been numerically solved using the

Runge–Kutta method from which the plot of U (propor-

tional to electric field in the TE to z mode) versus u has

been obtained. From the plot of U versus u, the phase

shift per period (flop) has been calculated using (25). The

value of r may also be obtained from the plot itself. The

propagation constants for other space harmonics may be

calculated using the relation fl~ = & + 2rn/p.

The variation of the phase shift per period with

frequency has been calculated for a range of values of c,

The calculated results for only two typical values of c are

shown in Fig. 2. The corresponding phase and the group
velocities have been found and are given in Fig. 3.

For a particular case, the calculated value of U may be

substituted in (14) to yield HY and Hz, from which the

locus of the magnetic lines of force may be drawn. Such

magnetic lines, whose slopes (indicated by arrows) were

(a)

i 4
E::

at= 2~2(1-+sm)
at ‘-c a~=2Uz6+5m)

-t’- +

‘=0#1 “4 % ‘P’4 PI p %%A%[ON CONST’
z, Z2 Z[ CHARACTERISTIC IMPEDANCE

FIRST APPROXIMATEION ST EPPEO WAVEGUIDE

‘=0PI
b/6

$$2
z, z~ z~ z~

APPROXIMATED FULL SECTION

DISTANCE
PROPAGATION
IMPEDANCE

coNsl-.

1/2 SECTION SURFACE

SECOND APPROXIMATION STEPPED WAVEGUIOE

Fig, 5. Stepped waveguide representation of the periodic structure: (a)
first-order approximation, (b) second-order approximation, and (c)
calculated results of approximate methods for a typicat value of
c =0.207 (set 2); first approx. (++, second approx. (._____), and
third approx. ( ).

obtained by using a digital computer, have been plotted in

Fig. 4 for a typical structure supporting the TEOI mode.

VI. STEPPED WAVEGUIDE ANALYSIS

In the next method, the circuit concept of the wave-

guide discontinuity has been utilized. The restriction given

in (5) is no longer important for the subsequent analysis.

In this method, the modulated width of the periodic

structure is approximated by small symmetrical sections

of uniform rectangular waveguides of different widths

placed in tandem (Fig. 5). The overall wave amplitude

transmission matrix for one complete period of the peri-

odic structure is obtained by multiplication of transmis-

sion matrices of individual waveguide sections. The phalse

shift per period of the structure is determined by using the

formula cos ( &p) = (A ~, + A2J/2, where A ~, and Azz are

the two diagonal elements of the overall transmission
matrix [16].

In the first-order approximation, one periodic cell h~as

been considered to be represented by waveguides of two

different widths as shown in Fig. 5(a). From the overall

transmission matrix, the phase shift per period is obtained
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from

Cos(flop]

(z, -1-Z2)2COS2(8, +-a,) -(z, - z, )2COS2((Y,-82)
.

42?12?2

(26)

where

81=p*p/4= [k’–(n/a1)2]’’24,4, % = kq/&,

Tl=m

r32= ~2p/4= [ k2– (w/a,)2] ‘~2p/4, .Z2 = kq/~2.

Equation (26) may be further reduced to

txls ( pop)= (1/4)
[[&+&j2

-cx)s (/3, +-/32) p/2

In the second-order appro

2 cm (& –~2)p/2 (27)

imdon, each perio~ic cell is

approximated by five uniform rectangular waveguides of

three different widths as shown in Fig. 5(b). Following the

same procedure, the phase shift. may be obtained from

~ cm (B1+fi2+fi3)p/3

+(/31-&)2(~2–&)24XXSl’pl-fi2+&)p/3

-(B, +82)2(62-83)2 ~Qs (P, +&-83) P/~

‘[& ‘~2)2f~2+~3)2 COS f~, - k ~JP/~

+2( p22 – pl’)( &’- p2’) Cos (&+ &)p/’3

+2(~12–~22)(&2-~22’) CXIS (& –&)p/3]. (28)

Seven waveguide sections of four dtiferent widths give a

third-order approximation from which the phase shift per

period may be calculated as before. For the purpose of

comparison, the calculated values of ~Op for c =0.063

obtained for the above three approximations are shown in

Fig. 5(c). The computed values of the phase shift per

period using the third-order approximation have also been

shown in Figa 2 for two values of c. h this analysis, the

basic assumptions made are the following. 1) only the

dominant mode is allowed in each of the waveguide

sections and, 2) junction susceptances that are formed at

the steps have been neglected.

12 8
c

10
1, 1 20

tit TEST DEVICE INSERTED HERE

Fig. 6. Experimental arrangement for the measurement of phase shift
per period and the electric field along the axis of the periodic struc-
ture: (1) microwave sweep oscillator (8 to 12.4 GHz), (2) 20-dB
directional coupler, (3) wavemeter, (4) power meter, (5) magic tee, (6),
(7) 3-dB directional coupler, (8)-(11) IO-LIB directional coupler, (12)
short circuit plunger, (13) shorting plate, (14) frequency converter, (15)
network analyzer, (16) polar display, and (17)-(2 1) matched load.

VII. EXPERIMENT

The propagation constant of the periodic structures

under study has been experimentally determined by

measuring the resonant frequencies of a short-circuited

length of the periodic structure having sufficient whole

number of periods [17]. The shorting plate is placed at the

plane of symmetry. At resonance, &p= qv/s where s is

the number of periods and q k an integer. The values of q

may be determined by moving a dielectric bead axially

along the structure and counting the numbers of zero

perturbations of the field.

For determining the nature of variation of the electric

field along the axial direction, i.e., to obtain the variation

of U versus u, the amount of field perturbation (propor-

tional to ~2] as the bead position is varied axially has

been found in a manner as suggested by Aikin [18]. The

experimental data agree closely with the theoretical plot

stated under Section III-B.

The experimental arrangement for the measurement of

/.?O at various values of u as well as for finding the

variation of U (i.e., IE 1) with u is shown in Fig. 6. It has

been possible to achieve quick and accurate results by

using a sweep oscillator and a network analyzer in the

above experiment.

The experimental results of &p versus -f have been

obtained for a number of cases showing good agreement

with analysis; typical experimental results are presented in

Fig. 2. The experimental results on the variation of the

electric field along the axis for several values of c have

been found to agree with the corresponding calculated

values.

VIII. CONCLUSION

The propagation constant of a rectangular waveguide

with sinusoidal width modulation has been determined

first by using field theory and employing 1) numerical

analysis and, 2) the Hill’s equation. In a second approach,

circuit theory was applied.

The solution of the wave equation for the propagating

wave within the structure possesses the characteristic ex-

ponent which retains all the properties of the propagation

constant of the structure. Numerical analysis has been

employed for the solution of the wave equation and then

the exponent was evaluated. The same has also been

obtained by finding the determinant of the Hill’s equa-

tion. Ilesults of both these methods are in good agreement
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